A reduction formula
is a mathematical technique, mainly used in integration, to reduce a complex integral to a simpler one, typically involving a lower power or simpler function. It’s especially useful in definite and indefinite integrals of powers, trigonometric functions, and exponential or logarithmic forms.

🔹 General Format of a Reduction Formula:
A reduction formula expresses:
In=∫fn(x) dxI_n = \int f_n(x) \, dxIn=∫fn(x)dx
in terms of:
In−1=∫fn−1(x) dxI_{n-1} = \int f_{n-1}(x) \, dxIn−1=∫fn−1(x)dx
🔸 Common Examples of Reduction Formulas
1. Power of sine:
In=∫sinnx dxI_n = \int \sin^n x \, dxIn=∫sinnxdx
Reduction formula:
∫sinnx dx=−1nsinn−1xcosx+n−1n∫sinn−2x dx\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1}x \cos x + \frac{n-1}{n} \int \sin^{n-2}x \, dx∫sinnxdx=−n1sinn−1xcosx+nn−1∫sinn−2xdx
2. Power of cosine:
∫cosnx dx=1ncosn−1xsinx+n−1n∫cosn−2x dx\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1}x \sin x + \frac{n-1}{n} \int \cos^{n-2}x \, dx∫cosnxdx=n1cosn−1xsinx+nn−1∫cosn−2xdx
3. Exponential and polynomial:
∫xnex dx\int x^n e^x \, dx∫xnexdx
Reduction formula:
∫xnex dx=xnex−n∫xn−1ex dx\int x^n e^x \, dx = x^n e^x – n \int x^{n-1} e^x \, dx∫xnexdx=xnex−n∫xn−1exdx
4. Power of log:
∫(lnx)ndx\int (\ln x)^n dx∫(lnx)ndx
Reduction formula:
∫(lnx)ndx=x(lnx)n−n∫(lnx)n−1dx\int (\ln x)^n dx = x (\ln x)^n – n \int (\ln x)^{n-1} dx∫(lnx)ndx=x(lnx)n−n∫(lnx)n−1dx
Would you like a step-by-step derivation or examples using any of these?
Top of Form
Bottom of Form